วันอาทิตย์ที่ 7 ธันวาคม พ.ศ. 2551

ทรงกลมท้องฟ้า


ทรงกลมท้องฟ้า (Celestial Sphere)
ในอดีตคนสมัยโบราณคิดว่าดาวต่างๆบนท้องฟ้า อยู่บนผนังทรงกลมอันหนึ่งที่ครอบโลกเราไว้ จึงมีการบัญญัติคำว่าทรงกลมท้องฟ้าขึ้นมา ทรงกลมท้องฟ้า คือ ทรงกลมเสมือนที่ครอบผู้สังเกตเอาไว้ โดยมีโลกเป็นจุดศูนย์กลางของทรงกลมที่มีรัศมีเท่ากับค่าอนันต์


เราจึงต้องมาทำความรู้จักกับเส้นสมมุติต่างๆและชื่อต่างที่ทางดาราศาสตร์กำหนดขึ้น เพื่อใช้ในการระบุบนทรงกลมท้องฟ้า
1. เส้นศูนย์สูตรฟ้า (Celestial Equator) ซีเรสเชียน อิเควเตอร์ เป็นเส้นที่ผ่านจุดทิศตะวันออกไปทิศตะวันตก เกิดขึ้นจากการที่โลกหมุนรอบตัวเอง ฉะนั้นเส้นนี้จะตั้งฉากกับแกนหมุนของโลก และเป็นแนวเดียวกับเส้น ศูนย์สูตรโลกพอดี (Earth Equator) ซึ่งแนวการเคลื่อนที่ของดาวก็จะขนานไปกับเส้นนี้ด้วย

2. เส้นสุริยะวิถี (Ecliptic) อิคลิปติค เป็นเส้นแนวการเคลื่อนที่ของดวงอาทิตย์ผ่านท้องฟ้า เส้นนี้เกิดจาก ระนาบการโคจรของโลกรอบดวงอาทิตย์ (ไม่ใช่เกิดจากการหมุนรอบตัวเอง) ฉะนั้นแนวเส้นนี้ จะเป็นแนวเส้นเดียวกับ เส้นทางโคจรของดาวเคราะห์รวมทั้งดวงจันทร์ด้วย ซึ่งอาจจะสูงหรือต่ำกว่าเส้นอิคลิปติดเล็กน้อย อิคลิปติด มีความหมายว่า การบังกัน ดังนั้นบนแนวเส้นนี้จะทำให้เกิดสุริยุปราคา จันทรุปราคา หรือ การบังกันของดาวเคราะห์
3. First Point of Aries จุดตัดที่เกิดขึ้นระหว่างเส้นศูนย์สูตรฟ้า กับเส้นสุริยะวิถี มีอยู่ 2 จุด เราเรียกจุดตัดของระนาบสองระนาบนี้ว่าโหนด (Node) จุดที่วัตถุท้องฟ้ากำลังเคลื่อนจากซีกฟ้าใต้ขึ้นซีกฟ้าเหนือเราเรียกว่า Ascending Node และจุดตัดที่วัตถุท้องฟ้ากำลังเคลื่อนที่จากซีกเหนือลงซีกฟ้าใต้เราเรียกว่า Descending Node ตำแหน่งที่ดวงอาทิตย์ตัดกับเส้นศูนย์สูตรฟ้าช่วงกำลังเคลื่อนจากซีกฟ้าใต้สู่ซีกฟ้าเหนือมีชื่อเรียกอีกชื่อหนึ่งว่า First Point of Aries หรือจุดเริ่มต้นที่ราศีแกะ มักแทนด้วยสัญญาลักษณ์  (Gramma)ซึ่งในอดีตจุดนี้อยู่ในกลุ่มดาวแกะ (Aries) แต่เนื่องจากการส่ายของแกนโลกที่ให้จุดนี้เลื่อนไปอยู่ในกลุ่มดาวปลาคู่ แต่ยังคงเรียกจุดนี้ว่า First Point of Aries และความสำคัญของจุดนี้คือเป็นจุดเริ่มต้นของค่า R.A 0 h
จากนั้นเมื่อเราพิจารณาเฉพาะจุดที่ผู้สังเกตุอยู่บนโลก ณ จุด A บริเวณซีกโลกเหนือ (อยู่เหนือเส้นศูนย์สูตรโลก) ซึ่งประเทศไทย อยุ่ที่ประมาณละติจูด 15 องศาเหนือ (เชียงใหม่ 20 องศาเหนือ ถึง นราธิวาส 3 องศาเหนือ กทม 13.5 องศาเหนือ) ดังรูป ณ.จุดนี้จะมีลักษณะของทรงครึ่งวงกลมรัศมีไม่จำกัดครอบผู้สังเกตุอยู่เราเรียกทรงครึ่งวงกลมนี้ว่า ทรงกลมท้องฟ้า (Celestial Sphere) ทำให้เกิดเส้นสมมุติอีก 4 เส้นคือ
4.เส้นขอบฟ้า (Horizon) คือแนวระดับสายตา บางทีก็เรียกว่าแนวบรรจบของทรงกลมท้องฟ้าส่วนบนกับ ท้องฟ้าส่วนล่าง
5.จุดเหนือศรีษะ หรือ จุดยอดฟ้า (Zenith) เซนิท คือจุดที่ตั้งฉากกับผู้สังเกตุขี้ขึ้นไปทางทรงกลมฟ้า
ส่วนจุดที่ตรงข้าม 180 องศา เรียกว่า จุดเนเดอร์ (Nadir)
6.เส้นเมริเดียน (Meridian) คือแนวเส้นที่ลากจากจุดทิศเหนือไปจุดทิศใต้ผ่านจุดยอดฟ้า (Zenith) พอดี ส่วนเส้นที่ไม่ได้ผ่านจุดเหนือศีรษะ เราจะเรียกว่า เส้นวงกลมชั่วโมง
7.ขั้วฟ้าเหนือ (North Celestial Poles) เป็นแนวขั้วเหนือของทรงกลมฟ้า ซึ่งจะชี้ไปทางดาวเหนือพอดี ส่วนจุดตรงกันข้าม 180 องศาเราเรียกว่า ขั้วฟ้าใต้ (South Celestial Poles)
ดวงดาวจะเคลื่อนที่ขนานไปกับเส้น celestial เสมอ แต่ที่จุดขั้วฟ้าเหนือ และใต้ ดวงดาวจะเดินทางเป็นวงรอบ ขั้วฟ้าทั้งสอง



ข้อสังเกต

1.เมื่อผู้สังเกตุอยู่บนเส้นศูนย์สูตรโลก (ละติจูด 0 องศา) แนวเส้นศูนย์สูตรฟ้า จะทับจุดยอดฟ้า Zenith ซึ่งดาวต่างๆจะเคลื่อนที่จากทิศตะวันออกไปจะข้ามศีรษะไปทิศตะวันตก ณ จุดนี้ ดาวเหนือจะที่ขอบฟ้าทิศเหนือพอดี

2.เมื่อผู้สังเกตุอยู่เหนือเส้นศูนย์สูตรโลก (เรียกว่าซีกโลกเหนือ) แนวเส้นศูนย์สูตรฟ้า จะเอียงไปทางใต้ ตามตำแหน่งที่ ผู้สังเกตุอยู่ เช่น ถ้าอยู่บนละติจุด 15 องศาเหนือ (ตำแหน่งประเทศไทย) เส้นศูนย์สูตรฟ้าก็ค่อนไปทางใต้ 15 องศาเช่นกัน และดาวเหนือก็จะอยู่สูงจากขอบฟ้าด้านทิศเหนือ 15 องศาเช่นกัน
ในทางกลับกัน ถ้าผู้สังเกตุอยู่ทางซีกโลกใต้ ประมาณละติจูด 15 องศาใต้ เส้นศูนย์สูตรฟ้าก็ค่อนไปทางเหนือ 15 องศาเช่นกัน ส่วนดาวเหนือจะอยู่ต่ำกว่าขอบฟ้า 15 องศา ทำให้มองไม่เห็น

3.เมื่อผู้สังเกตุอยู่ขั้วโลกเหนือ แนวเส้นศูนย์สูตรฟ้าจะอยู่ระดับเดียวกับเส้นขอบฟ้า Horizontal line ดาวเหนือจะอยู่ที่จุด zenith ดาวต่างๆจะหมุนรอบตัวเราไม่มีหายไปไหน ถ้าไม่ถูกแสงอาทิตย์กลบไปเสียก่อน


8.เส้นวงกลมชั่วโมง (Hour Circle) เส้นที่ลากจากจุด NCP ไปจุด SCP โดยไม่ได้ผ่านจุดเหนือศีรษะ เราจะเรียกว่า เส้นวงกลมชั่วโมง ซึ่งจะมีได้หลายเส้นต่างจากเส้นเมอริเดียน ดังนั้นเส้นเมริเดียนก็คือเส้นวงกลมชั่วโมงที่ผ่านจุดเซนิทหรือจุดเนเดอร์นั่นเอง บนทรงกลมท้องฟ้า 1 รอบ 360 องศา หรือ 24 ชั่วโมง จะประกอบด้วยเส้นวงกลมชั่วโมงมากมาย ช่วงห่างของเส้นวงกลมชั่วโมง 1 ชั่วโมงจะมีค่าเท่ากับ 15 องศา
9.มุมชั่วโมง (Hour Angle หรือ H.A.) เป็นมุมที่วัตถุท้องฟ้าที่ห่างจากเส้นเมริเดียนส่วนบนตามแนวเส้นศูนย์สูตรฟ้า โดยจุดเริ่มต้นที่เส้นเมริเดียนส่วนบนมีค่าเท่ากับ 0 ชั่วโมง แล้ววัดไปทางทิศตะวันตก มีหน่วยเป็นชั่วโมง นาที และวินาที โดยที่ 1 ชั่วโมงมีค่าเท่ากับ 15 องศา 1 นาทีเท่ากับ 15 ลิปดา และ 1 วินาทีมีค่าเท่ากับ 15 ฟิลิปดา หมายความว่าถ้าดาวฤกษ์ A ที่อยู่บนเส้นศูนย์สูตรฟ้า เมื่อเคลื่อนมาอยู่ที่เส้นเมริเดียนส่วนบนจะมีค่า H.A. เท่ากับ 0 ชั่วโมง เมื่อปล่อยให้เวลาผ่านไป ดาวฤกษ์ A ไปอยู่ที่ขอบฟ้าด้านทิศตะวันตก H.A. เท่ากับ 6 ชั่วโมง เมื่อกลับมาปรากฏที่ขอบฟ้าด้านทิศตะวันออก H.A. เท่ากับ 18 ชั่วโมง
10. Circumpolar Star หมายถึงดาวที่วนรอบขั้วฟ้าที่ไม่มีวันลับฟ้าไปเลยแต่เราจะมองไม่เห็นในช่วงเวลากลางวัน เรามักเรียกว่า ดาวรอบขั้วฟ้า มีความสัมพันธ์กับตำแหน่งของผู้สังเกต ณ ตำแหน่งละติดจูดที่ต่างกัน

เทห์วัตถุซึ่งอยู่ไกลที่สุดในท้องฟ้า

เทห์วัตถุซึ่งอยู่ไกลที่สุดในท้องฟ้า
นักดาราศาสตร์ใช้คำว่า เนบิวลา เรียกชื่อสิ่งที่ปรากฏเป็นเมฆหมอกฝ้าอยู่คงที่ท่ากลางดวงดาวบนท้องฟ้า อาจจะปรากฏสว่างเรืองหรือมืดสนิทก็ได้ เรามองเห็นเนบิวลาได้ยาก เพราะแม้แสงที่สว่างก็มีแสงจางแผ่กระจายไม่รวมกันเข้มเป็นจุดสว่างดังเช่นดาวฤกษ์ เราจึงสามารถมองเห็นเนบิวลาบนท้องฟ้าด้วยตาเปล่าได้เพียง 4 แห่ง ในขณะซึ่งสามารถมองเห็นดาวฤกษ์ด้วยตาเปล่าถึง 5,000 ดวง
ความจริงเนบิวลามีอยู่จริงเป็นปริมาณไม่น้อย การที่เราจะตรวจพบหรือไม่ขึ้นอยู่กับความไวของอุปกรณ์ที่ใช้ เนบิวลาที่อยู่ในระบบทางช้างเผือกของเรา เรียกว่า Galactic Nebula ซึ่งเป็นกลุ่มก๊าซที่มีความสัมพันธ์ทางใดทางหนึ่งกับดาวฤกษ์ในกาแลกซี ซึ่งดวงอาทิตย์ของเราเป็นสมาชิกหน่วยหนึ่ง
ตัวอย่างของ Galactic Nebula ชนิดแผ่กระจาย ได้แก่ กลุ่มที่อยู่ในกลุ่มดาว Orion นับเป็นกลุ่มก๊าซและฝุ่นซึ่งใหญ่โตกลุ่มหนึ่งในกาแลกซี กินอาณาเขตกว้างขวางในอวกาศ แผ่คลุมดาวฤกษ์อยู่ภายใน องค์ประกอบสำคัญ คือก๊าซไฮโดรเจน ฮีเลียม มากที่สุด และนอกจากนั้นก็มีออกซิเจน และไนโตรเจน เป็นต้น เนบิวลานี้เรืองแสงเพราะถูกกระตุ้นด้วยรังสีอุลตราไวโอเลตจากดาวฤกษ์ที่ร้อนจัดซึ่งอยู่ภายใน และบางส่วนของก๊าซและฝุ่นที่ห่างดาวฤกษ์ร้อนและไม่เปล่งแสงเรือง จะบังทับแสงดาวฤกษ์ที่อยูเบื้องหลังไกลออกไป จึงปรากฏเป็นเนบิวลามืด Galactic Nebula ชนิดเป็นดวงนั้นเป็นกลุ่มก๊าซรูปทรงกลม ซึ่งแผ่กระจายออกมาจากการระเบิดของดาวฤกษ์ และปรากฏให้เห็นหลายดวงบนท้องฟ้า เช่นที่เรียกกันว่า เนบิวลาวงแหวน เนบิวลาปู เนบิวลานกฮูก ตามความคล้ายคลึงกับรูปสิ่งของ สัตว์ที่มนุษย์คุ้นเคยกันทั่วไป
เนบิวลานอกกาแลกซีหรือ Spiral Nebula นั้น เป็นวัตถุจำพวกที่อยู่ไกลห่างออกไปนอกกาแลกซีของเรา เป็นต้นว่า เมฆแมกเจลแลน (Magellanic Clouds) ซึ่งเห็นได้ด้วยตาเปล่าบนท้องฟ้าของซีกโลกภาคใต้ อยู่ห่างไปขนาดแสงสว่างซึ่งเดินทางได้วินาทีละ 300,000 กิโลเมตร ต้องใช้เวลาเดินทาง 150,000 ปีจึงจะถึง ซึ่งเรียกว่าอยู่ห่างไป 150,000 ปีแสง หรือ Spiral Nebula ในทิศทางของกลุ่มดาว Andromeda อยู่ห่างไปถึง 2,200,000 ปีแสง Spiral Nebula มีอยู่มากมาย ตั้งแต่ที่มองเห็นด้วยตาเปล่า จนที่ไกลออกไปแสงริบหรี่ ต้องสำรวจด้วยกล้อง โทรทรรศน์ใหญ่ที่สุดในโลก โดยถ่ายภาพเปิดหน้ากล้องนานนับชั่วโมง เท่าที่บันทึกทำทะเบียนไว้ถึงขนาดความสว่างแมกนิจูดที่ 15 มีถึง 16,000 เนบิวลา เชื่อว่าถ้านับถึงที่แสงหรี่ถึงขนาดแมกนิจูดที่ 23 ซึ่งหรี่ที่สุดที่กล้องโทรทรรศน์ในโลกจะสำรวจได้คงจะมีปริมาณถึง 1,000 ล้านเนบิวลา
ผลกาศึกษาค้นคว้าทางดาราศาสตร์ แสดงว่า Spiral Nebula แต่ละดวงก็คือระบบใหญ่ของดาวฤกษ์ ฝุ่น และก๊าซ ดังเช่นกาแลกซีทางช้างเผือกของเรานี้เอง ถ้าเราออกไปอยู่บนดาวฤกษ์ดวงใดดวงหนึ่งในระบบ Spiral Nebula ของกลุ่มดาว Andromeda แล้วมองกลับมายังกาแลกซีของเรา ก็จะเห็นกาแลกซีมีรูปลักษณะคล้ายคลึงกับที่เราเห็น Spiral Nebula นั่นเอง ดังนั้น Spiral Nebula หรือเนบิวลานอกกาแลกซีก็คือ ระบบใหญ่ของดาวฤกษ์ ฝุ่นและก๊าซ ซึ่งแต่ละระบบระมีดาวฤกษ์คิดเฉลี่ยประมาณ 800 ล้านดวง กาแลกซีของเราเป็น Spiral Nebula ค่อนข้างใหญ่มีดาวฤกษ์ประมาณ 1,000,000 ล้านดวง

วันอังคารที่ 25 พฤศจิกายน พ.ศ. 2551

ดาวเคราะห์

ดาวเคราะห์
จากวิกิพีเดีย สารานุกรมเสรี

ดาวเคราะห์ (ภาษากรีก πλανήτης, planetes หรือ "ผู้พเนจร") คือวัตถุขนาดใหญ่ที่โคจรรอบดาวฤกษ์ ก่อนทศวรรษ 1990 มีดาวเคราะห์ที่เรารู้จักเพียง 9 ดวง (ทั้งหมดอยู่ในระบบสุริยะ) ปัจจุบันเรารู้จักดาวเคราะห์ใหม่อีกมากกว่า 100 ดวง ซึ่งเป็นดาวเคราะห์นอกระบบ คือ โคจรรอบดาวฤกษ์ดวงอื่นที่ไม่ใช่ดวงอาทิตย์

ทฤษฎีที่เป็นที่ยอมรับกันมากที่สุดในปัจจุบันกล่าวว่าดาวเคราะห์ก่อตัว ขึ้นจากการยุบตัวลงของกลุ่มฝุ่นและแก๊ส พร้อมๆ กับการก่อกำเนิดดวงอาทิตย์ที่ใจกลาง ดาวเคราะห์ไม่มีแสงสว่างในตัวเอง สามารถมองเห็นได้เนื่องจากพื้นผิวสะท้อนแสงจากดวงอาทิตย์ ดาวเคราะห์ส่วนใหญ่ในระบบสุริยะมีดาวบริวารโคจรรอบ ยกเว้นดาวพุธและดาวศุกร์ และสามารถพบระบบวงแหวนได้ในดาวเคราะห์ขนาดใหญ่อย่างดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูน มีเพียงดาวเสาร์เท่านั้นที่สามารถมองเห็นวงแหวนได้ชัดเจนด้วยกล้องโทรทรรศน์

นิยามของดาวเคราะห์

เมื่อวันที่ 24 สิงหาคม พ.ศ. 2549 ที่ประชุมสหพันธ์ดาราศาสตร์สากล ที่กรุงปราก สาธารณรัฐเช็ก ซึ่งประกอบด้วยนักดาราศาสตร์กว่า 2500 คนจาก 75 ประเทศทั่วโลก ได้มีมติกำหนดนิยามใหม่ของดาวเคราะห์ ดังนี้ [1][2]

1. เป็นดาวที่โคจรรอบดาวฤกษ์ ซึ่งในที่นี้หมายถึงดวงอาทิตย์ แต่ไม่ใช่ดาวฤกษ์ และไม่ใช่ดวงจันทร์บริวาร
2. มีมวลมากพอทที่จะมีแรงโน้มถ่วงดึงดูดตัวเองให้อยู่ในสภาวะสมดุลอุทกสถิต หรือรูปร่างใกล้เคียงกับทรงกลม
3. มีวงโคจรที่ชัดเจนและสอดคล้องกับดาวเคราะห์ข้างเคียง
4. มีขนาดเส้นผ่านศูนย์กลางอย่างน้อย 500 ไมล์ (804.63 กิโลเมตร)

นิยามใหม่นี้ส่งผลให้ ดาวพลูโต (♇) และดาวอีรีส ซึ่งเคยนับเป็นดาวเคราะห์ดวงที่ 9 และ 10 ถูกปลดออกจากการเป็นดาวเคราะห์ในระบบสุริยะ คงเหลือดาวเคราะห์เพียง 8 ดวง เนื่องจากดาวพลูโตไม่สามารถควบคุมแรงดึงดูดและวงโคจรของสิ่งต่างๆ ที่อยู่นอกระบบสุริยะ ทั้งยังมีวงโคจรที่ไม่สอดคล้องกับดาวเคราะห์ข้างเคียง และให้ถือว่าดาวพลูโตเป็น ดาวเคราะห์แคระ ซึ่งมีลักษณะคล้ายกับวัตถุขนาดเล็กในระบบสุริยะ

วันอังคารที่ 18 พฤศจิกายน พ.ศ. 2551

ทฤษฎีการกำเนิดระบบสุริยะ

ทฤษฎีการกำเนิดของระบบสุริยะ

หลักฐานที่สำคัญของการกำเนิดของระบบสุริยะก็คือ การเรียงตัวและการเคลื่อนที่อย่างเป็นระบบระเบียบของดาวเคราะห์ ดวงจันทร์บริวารของดาวเคราะห์ และดาวเคราะห์น้อย ที่แสดงให้เห็นว่าเทหวัตถุทั้งมวลบนฟ้านั้นเป็นของระบบสุริยะ ซึ่งจะเป็นเรื่องที่เป็นไปไม่ได้เลยที่เทหวัตถุท้องฟ้าหลายพันดวงจะมีระบบโดยบังเอิญโดยมิได้มีจุดกำเนิดร่วมกัน
Piere Simon Laplace ได้เสนอทฤษฎีจุดกำเนิดของระบบสุริยะไว้เมื่อปี ค.ศ. 1796 กล่าวว่า ในระบบสุริยะจะมีมวลของก๊าซรูปร่างแบนๆขนาดมหึมาหมุนรอบตัวเองอยู่ ในขณะที่หมุนรอบตัวเองนั้นจะเกิดการหดตัวลงเพราะแรงดึงดูดของมวลก๊าซ ซึ่งจะทำให้อัตราการหมุนรอบตัวเองมีความเร็วสูงขึ้นเพื่อรักษาโมเมนตัมเชิงมุม (Angular Momentum) ในที่สุดเมื่อความเร็วหนีศนย์กลางที่ขอบของกลุ่มก๊าซมีมากเกินกว่าแรงดึงดูด ก็จะทำให้เกิดมีวงแหวนของกลุ่มก๊าซแยกตัวออกไปจากศูนย์กลางของกลุ่มก๊าซเดม และเมื่อเกิดการหดตัวอีกก็จะมีวงแหวนของกลุ่มก๊าซเพิ่มขึ้นต่อไปเรื่อยๆวงแหวนที่แยกตัวไปจากศูนย์กลางแต่ละวงจะมีความกว้างไม่เท่ากัน ตรงบริเวณที่มีความหนาแน่นมากที่สุดของวงจะคอยดึงวัตถุทั้งหมดในวงแหวนมารวมกันแล้วกลั่นตัวเป็นดาวเคราะห์ ดวงจันทร์ของดาวเราะห์จะเกิดขึ้นจากการหดตัวของดาวเคราะห์ สำหรัดาวหางและสะเก็ดดาวนั้นเกิดขึ้นจากเศษหลงเหลือระหว่างการเกิดของดาวเคราะห์ดวงต่างๆดั้งนั้น ดวงอาทิตย์ในปัจจุบันก็คือ มวลก๊าซดั้งเดิมที่ทำให้เกิดระบบสุริยะขึ้นมานั่นเอง

นอกจากนี้ยังมีอีกหลายทฤษฎีที่มีความเชื่อในการเกิดระบบสุริยะ แต่ในที่สุดก็มีความเห็นคล้ายๆกับแนวทฤษฎีของ Laplace ตัวอย่างเช่น ทฤษฎีของ Coral Von Weizsacker นักดาราศาสตร์ฟิสิกส์ชาวเยอรมันซึ่งกล่าวว่า มีวงกลมของกลุ่มก๊าซและฝุ่นละอองหรือ เนบิวลา ต้นกำเนิดดวงอาทิตย์ (Solar Nebular) ห้อมล้อมอยู่รอบดวงอาทิตย์ขณะที่ดวงอาทิตย์เกิดใหม่ๆ และละอองสสารในกลุ่มก๊าซเกิดการกระแทกซึ่งกันและกันแล้วกลายเป็นกลุ่มก้อนสสารขนาดใหญ่ จนกลายเป็นเทหวัตถุแข็งเกิดขึ้นในวงโคจรของดวงอาทิตย์ ซึ่งเรียกว่า ดาวเคราะห์ และ ดวงจันทร์ของดาวเคระห์ นั่นเอง
ระบบสุริยะของเรามีขนาดใหญ่โตมากเมื่อเทียบกับโลกที่เราอาศัยอยู่ แต่มีขนาดเล็กเมื่อเทียบกับกาแล็กซีของเราหรือกาแล็กซีทางช้างเผือก ระบบสุริยะตั้งอยู่ในบริเวณวงแขนกาแล็กซีทางช้างเผือก(Milky way) ซึ่งเปรียบเสมือนวงล้อยักษ์ที่หมุนอยู่ในอวกาศ โดยระบบสุริยะจะอยู่ห่างจากจุดศูนย์กลางของกาแล็กซีทางช้างเผือกประมาณ 30,000ปีแสง ดวงอาทิตย์จะใช้เวลาประมาณ 225 ล้านปี ในการเคลื่อนที่ครบรอบจุดศูนย์กลางของกาแล็กซีทางช้างเผือก 1 รอบ นักดาราศาสตร์จึงมีความเห็นร่วมกันว่า เทหวัตถุทั้งมวลในระบบสุริยะ ไม่จะเป็นดาวเคราะห์ทุกดวง ดวงจันทร์ของดาวเคราะห์ ดาวเคราะห์น้อย ดาวหางและอุตกาบาต เกิดขึ้นมาพร้อมๆกัน มีอายุเท่ากันตามทฤษฎีจุดกำเนิดของระบบสุริยะ และจากการเอาหินจากดวงจันทร์มาวิเคราะห์การสลายตัวของสารกัมมันตรังสี ทำให้ทราบว่าดวงจันทร์มีอายุประมาณ 4,600 ล้านปี ในขณะเดียวกันนักธรณีวิทยาก็ได้คำนวณหาอายุของหินบนผิวโลกจากการสลายตัวของอะตอมยูเรเนียม และสารไอโซโทปของธาตุตะกั่ว ทำให้นักวิทยาศาสตร์เชื่อว่า โลก ดวงจันทร์ อุกกาบาต มีอายุประมาณ 4,600 ล้านปี และอายุของระบบสุริยะนับตั้งแต่เริ่มเกิดฝุ่นละอองก๊าซในอวกาศ จึงมีอายุไม่เกิน 5,000 ล้านปี

บิกแบง

บิกแบง

จากวิกิพีเดีย สารานุกรมเสรี

ตามทฤษฎีบิกแบง จักรวาลมีจุดกำเนิดมาจากสภาพที่มีความหนาแน่นสูงและร้อน และจักรวาลมีการขยายตัวอยู่ตลอดเวลา

บิกแบง (อังกฤษ: Big Bang หมายถึง การระเบิดครั้งใหญ่) คือแบบจำลองของเอกภพในวิชาจักรวาลวิทยาซึ่ง ได้รับการสนับสนุนจากการสังเกตการณ์ที่แตกต่างกันจำนวนมาก นักวิทยาศาสตร์โดยทั่วไปใช้คำนี้สำหรับกล่าวถึงแนวคิดการขยายตัวของเอกภพ หลังจากสภาวะแรกเริ่มที่ทั้งร้อนและหนาแน่นอย่างมากในช่วงเวลาจำกัดระยะ หนึ่งในอดีต และยังมีการขยายตัวอยู่จนถึงในปัจจุบัน จอร์เจส เลไมเตร (Georges Lemaître) เป็นผู้เสนอแนวคิดการกำเนิดของเอกภพ ซึ่งต่อมารู้จักกันในชื่อ ทฤษฎีบิกแบง ในเบื้องแรกเขาเรียกทฤษฎีนี้ว่า hypothesis of the primeval atom อเล็กซานเดอร์ ฟรีดแมน ทำการคำนวณแบบจำลองโดยมีกรอบการพิจารณาอยู่บนพื้นฐานของทฤษฎีสัมพัทธภาพทั่วไปของอัลเบิร์ต ไอน์สไตน์ ต่อมาในปี ค.ศ. 1929 เอ็ดวิน ฮับเบิลค้นพบว่า ระยะห่างของกาแลกซี่มีสัดส่วนที่เปลี่ยนแปลงสัมพันธ์กับการเคลื่อนไปทางแดง (redshift) การสังเกตการณ์นี้บ่งชี้ว่า ดาราจักรและกระจุกดาวอัน ห่างไกลกำลังเคลื่อนที่ออกจากจุดสังเกต ซึ่งหมายความว่าเอกภพกำลังขยายตัว ยิ่งตำแหน่งดาราจักรไกลยิ่งขึ้น ความเร็วปรากฏก็ยิ่งเพิ่มมากขึ้น[1] หากเอกภพในปัจจุบันกำลังขยายตัว แสดงว่าก่อนหน้านี้ เอกภพย่อมมีขนาดเล็กกว่า หนาแน่นกว่า และร้อนกว่าที่เป็นอยู่ แนวคิดนี้มีการพิจารณาอย่างละเอียดย้อนไปจนถึงระดับความหนาแน่นและอุณหภูมิที่จุดสูงสุด และผลสรุปที่ได้ก็สอดคล้องอย่างยิ่งกับผลจากการสังเกตการณ์ ทว่าการเพิ่มของอัตราเร่งมีข้อจำกัดในการตรวจสอบสภาวะพลังงานที่สูงขนาดนั้น หากไม่มีข้อมูลอื่นที่ช่วยยืนยันสภาวะเริ่มต้นชั่วขณะก่อนการระเบิด ลำพังทฤษฎีบิกแบงก็ยังไม่สามารถใช้อธิบายสภาวะเริ่มต้นได้ มันเพียงอธิบายกระบวนการเปลี่ยนแปลงของเอกภพที่เกิดขึ้นหลังจากสภาวะเริ่ม ต้นเท่านั้น

คำว่า "บิกแบง" ที่จริงเป็นคำล้อเลียนที่เกิดจากนักดาราศาสตร์ชื่อ เฟรด ฮอยล์ จากการออกอากาศทางวิทยุครั้งหนึ่งในปี ค.ศ. 1949 ซึ่งเขาดูหมิ่นและตั้งใจจะทำลายความน่าเชื่อถือของทฤษฎีที่เขาเห็นว่าไม่มี ทางเป็นจริง[2] ในเวลาต่อมา ฮอยล์ได้ช่วยศึกษาผลกระทบของนิวเคลียร์ในการก่อเกิดธาตุมวลหนักที่ได้จากธาตุซึ่งมีมวลน้อยกว่า อย่างไรก็ดี การค้นพบไมโครเวฟพื้นหลังในปี ค.ศ. 1964 ยิ่งทำให้นักวิทยาศาสตร์ส่วนใหญ่ไม่สามารถปฏิเสธทฤษฎีบิกแบงได้

ประวัติ

ทฤษฎีบิกแบงพัฒนาขึ้นมาจากการสังเกตการณ์โครงสร้างเอกภพร่วมกับการพิจารณาทฤษฎีต่างๆ ที่เป็นไปได้ ในปี ค.ศ. 1912 เวสโต สลิเฟอร์ วัดค่าการเคลื่อนของดอปเปลอร์ครั้งแรกของ "เนบิวลาชนิดก้นหอย" (เป็นชื่อเก่าที่เคยใช้เรียกดาราจักรชนิดก้นหอย) และต่อมาก็ค้นพบว่า เนบิวลาแทบทั้งหมดกำลังเคลื่อนที่ออกห่างจากโลก เขามิได้สรุปแนวคิดทางจักรวาลวิทยาจากข้อเท็จจริงนี้ อันที่จริงในช่วงยุคนั้นยังเป็นที่ถกเถียงกันอยู่มากว่า เนบิวลาเหล่านี้เป็น "เอกภพเกาะ" ที่อยู่ภายนอกดาราจักรทางช้างเผือกหรือไม่[3] สิบปีต่อมา อเล็กซานเดอร์ ฟรีดแมน นักจักรวาลวิทยาและนักคณิตศาสตร์ชาวรัสเซียได้พัฒนาสมการฟรีดแมนขึ้นจากทฤษฎีสัมพัทธภาพทั่วไปของไอน์สไตน์ แสดงให้เห็นว่าเอกภพกำลังขยายตัวอยู่ ซึ่งขัดแย้งกับแบบจำลองเอกภพสถิตที่ไอน์สไตน์สนับสนุนอยู่[4] ปี ค.ศ. 1924 เอ็ดวิน ฮับเบิล ตรวจวัดระยะห่างของเนบิวลาชนิดก้นหอยที่ใกล้ที่สุด ผลการตรวจแสดงให้เห็นว่า ระบบดาวเหล่านั้นที่แท้เป็นดาราจักรอื่น เมื่อถึงปี ค.ศ. 1927 จอร์เจส เลไมเตร พระคาทอลิกนักฟิสิกส์ชาวเบลเยียม ทำการพัฒนาสมการของฟรีดแมนโดยอิสระ ผลที่ได้ทำให้คาดการณ์ได้ว่าการถอยห่างของเนบิวลาเป็นผลเนื่องจากการขยายตัวของเอกภพ[5]

ค.ศ. 1931 เลไมเตรพัฒนางานของเขาคืบหน้าไปอีก และเสนอแนวคิดว่า การที่เอกภพมีการขยายตัวเมื่อเวลาเดินล่วงหน้าไป จะเป็นจริงได้ก็ต่อเมื่อเอกภพมีการหดตัวลงเมื่อเวลาเดินย้อนกลับ และจะเป็นเช่นนั้นไปเรื่อยๆ จนกว่าเอกภพจะหดตัวไม่ได้อีกต่อไป ทำให้มวลทั้งหมดของเอกภพอัดแน่นเป็นจุดๆ หนึ่ง คือ "อะตอมแรกเริ่ม" ณ จุดใดจุดหนึ่งของกาลเวลาก่อนที่เวลาและอวกาศจะถือกำเนิดขึ้น ณ จุดนั้นยังไม่มีโครงสร้างของเวลาและอวกาศใดๆ ทฤษฎีนี้สะท้อนความเชื่อเก่าแก่ก่อนหน้านี้เกี่ยวกับไข่คอสมิก (cosmic egg) ซึ่งเป็นจุดเริ่มต้นของเอกภพ[6]

ทางด้านของฮับเบิลก็พยายามพัฒนาตัวชี้วัดระยะทางหลายรูปแบบนับแต่ ค.ศ. 1924 ซึ่งเป็นการเบิกทางของ cosmic distance ladder เขาใช้กล้องโทรทรรศน์ฮุกเกอร์ ขนาด 100 นิ้ว (2,500 มม.) ที่หอดูดาวเมาท์วิลสัน ทำให้สามารถประเมินระยะห่างระหว่างดาราจักรได้จากผลการตรวจวัดการเคลื่อนไปทางแดง ซึ่งมีการวัดค่าไว้ก่อนหน้านี้แล้วโดยสลิเฟอร์ ฮับเบิลค้นพบความเกี่ยวพันระหว่างระยะทางกับความเร็วในการเคลื่อนถอยในปี ค.ศ. 1929 ปัจจุบันความสัมพันธ์ข้อนี้เป็นที่รู้จักในชื่อ กฎของฮับเบิล[7] งานของเลไมเตรสนับสนุนผลงานชิ้นนี้ และเขาได้สร้างหลักการพื้นฐานจักรวาลวิทยาขึ้น[8]

ตลอดคริสต์ทศวรรษ 1930 มีทฤษฎีและแนวคิดต่างๆ เกิดขึ้นมากมายเพื่อพยายามอธิบายผลสังเกตการณ์ของฮับเบิล รวมถึงแบบจำลองของมิลเน (Milne Model)[9] ทฤษฎีการแกว่งตัวของเอกภพ (เสนอโดยฟรีดแมน และได้รับการสนับสนุนจากไอน์สไตน์กับริชาร์ด โทลแมน)[10] และข้อสมมุติฐาน tired light ของฟริตซ์ ชวิกกี[11]

หลังจากสงครามโลกครั้งที่สอง มีแนวคิดที่เป็นไปได้แตกต่างกันอยู่สองแนวทาง ทางหนึ่งเป็นแนวคิดเรื่องแบบจำลองสภาวะสมมูลของเฟรด ฮอยล์ ซึ่งเห็นว่าจะมีสสารใหม่เกิดขึ้นระหว่างที่เอกภพขยายตัว แนวคิดนี้เอกภาพจะมีสภาวะแทบจะคงที่ ณ จุดใดๆ ของเวลา[12] อีกแนวคิดหนึ่งเป็นทฤษฎีบิกแบงของเลไมเตร ซึ่งได้พัฒนาต่อมาโดยจอร์จ กาโมว์ ผู้เสนอทฤษฎีบิกแบงนิวคลีโอซินทีสิส[13] และเป็นผู้ร่วมทีมกับราล์ฟ อัลเฟอร์ และโรเบิร์ต เฮอร์มัน ในการทำนายปรากฏการณ์ของการแผ่รังสีไมโครเวฟพื้นหลัง[14] แต่จะว่าไปแล้ว ฮอยล์นั่นเองที่เป็นผู้นำวลีมามาโยงกับทฤษฎีของเลไมเตร โดยเรียกถึงทฤษฎีนี้ว่า "เจ้าแนวคิดแบบบิกแบงนี่" ระหว่างการออกอากาศทางสถานีวิทยุบีบีซีเมื่อเดือนมีนาคม ค.ศ. 1949[15] นักวิทยาศาสตร์ต่างแบ่งออกเป็นสองพวกสนับสนุนทฤษฎีทั้งสองทางนี้ ในเวลาต่อมาแนวคิดหลังเริ่มเป็นที่นิยมมากกว่า การค้นพบไมโครเวฟพื้นหลังในปี ค.ศ. 1964 ช่วยยืนยันว่าจุดกำเนิดและพัฒนาการของจักรวาลสอดคล้องกับแนวคิดแบบทฤษฎีบิกแบงมากกว่า

การศึกษาจักรวาลวิทยาตามแนวคิดบิกแบงมีการก้าวกระโดดครั้งใหญ่ในช่วงปลาย คริสต์ทศวรรษ 1990 เนื่องมาจากความก้าวหน้าอย่างมากของเทคโนโลยีกล้องโทรทรรศน์ ตลอดจนผลการวิเคราะห์ข้อมูลจำนวนมากจากดาวเทียมต่างๆ เช่น จาก COBE[16] จากกล้องโทรทรรศน์อวกาศฮับเบิล และจาก WMAP[17] ปัจจุบันการศึกษาจักรวาลวิทยามีข้อมูลและเครื่องมือวัดที่แม่นยำมากมายที่ ช่วยตรวจสอบปัจจัยต่างๆ ของแบบจำลองบิกแบง ทำให้เกิดการค้นพบอันไม่คาดฝันว่า เอกภพดูเหมือนจะกำลังขยายตัวอยู่ด้วยความเร็วที่เพิ่มขึ้น

ภาพรวมของทฤษฎี

เส้นเวลาของบิกแบง

เมื่อพิจารณาตรรกะจากการขยายตัวของเอกภพโดยใช้ทฤษฎีสัมพัทธภาพทั่วไป หากเวลาย้อนหลังไปจะทำให้ความหนาแน่นและอุณหภูมิมีค่าสูงขึ้นอย่างไม่จำกัดขณะที่เวลาในอดีตจำกัดอยู่ค่าหนึ่ง[18] ภาวะเอกฐานเช่น นี้เป็นไปไม่ได้เพราะขัดแย้งกับทฤษฎีสัมพัทธภาพทั่วไป เป็นที่ถกเถียงกันอยู่มากกว่าเราสามารถประมาณภาวะเอกฐานได้ใกล้สักเพียงไหน (ซึ่งไม่มีทางประมาณไปได้มากเกินกว่ายุคของพลังค์) ภาวะเริ่มแรกที่มีความร้อนและความหนาแน่นสูงอย่างยิ่งนี้เองที่เรียกว่า "บิกแบง"[19] และถือกันว่าเป็น "จุดกำเนิด" ของเอกภพของเรา จากผลการตรวจวัดการขยายตัวของซูเปอร์โนวาประเภท Ia การตรวจวัดความแปรเปลี่ยนของอุณหภูมิในไมโครเวฟพื้นหลัง และการตรวจวัดลำดับวิวัฒนาการของดาราจักร เชื่อว่าเอกภพมีอายุประมาณ 13.73 ± 0.12 พันล้านปี[20] การที่ผลตรวจวัดทั้งสามวิธีให้ค่าออกมาใกล้เคียงกันเป็นการยืนยันสนับสนุนแบบจำลองแลมบ์ดา-ซีดีเอ็ม (ΛCDM) ที่อธิบายอย่างละเอียดถึงองค์ประกอบต่างๆ ในเอกภพ

มีการคาดเดาถึงสภาวะเริ่มแรกของบิกแบงไปต่างๆ นานา แต่แบบจำลองที่เป็นที่ยอมรับมากที่สุดคือ เอกภพเดิมมีอยู่เพียงหนึ่งเดียวซึ่งมีความหนาแน่นที่สูงมาก มีอุณหภูมิและความดันสูงมาก ต่อมาจึงขยายตัวออกในทันทีทันใดและมีอุณหภูมิลดลง ประมาณว่าใน 10-35 วินาทีของการขยายตัวเป็นสภาวะการพองตัวของเอกภพซึ่งเติบโตขึ้นอย่างรวดเร็วแบบเอ็กโปเนนเชียล[21] หลังจากสิ้นสุดสภาวะการพองตัว เอกภพประกอบด้วยควาร์ก-กลูออนพลาสมาและอนุภาคมูลฐานทั้งหมด[22] อุณหภูมิยังคงสูงมากทำให้การเคลื่อนที่ของอนุภาคต่างๆ มีความเร็วสัมพัทธ์สูง คู่อนุภาคและปฏิอนุภาคทั้งหมดยังมีการเกิดใหม่และแตกดับลงไปในการปะทะ ต่อมาจึงเกิดปฏิกิริยาบางอย่างที่เรียกว่า บาร์โยเจเนซิส (baryogenesis) ทำลายภาวะสมดุลในการรักษาจำนวนบาร์ยอน เกิดเป็นควาร์กและเลปตันขึ้นมาจำนวนหนึ่งที่มากกว่าปฏิควาร์กและปฏิเลปตันประมาณ 1 ใน 30 ล้านส่วน ซึ่งเป็นต้นเหตุทำให้มีสสารมากกว่าปฏิสสารในเอกภพปัจจุบัน[23]

เอกภพยังคงขยายตัวอย่างต่อเนื่องและมีอุณหภูมิลดลง ทำให้พลังงานโดยทั่วไปในแต่ละอนุภาคลดลงด้วย ยุคการทำลายสมดุล (Symmetry breaking) ทำให้แรงพื้นฐานทางฟิสิกส์และพารามิเตอร์ต่างๆ ของอนุภาคมูลฐานกลายมาอยู่ในรูปแบบดังเช่นปัจจุบัน[23] หลังจากผ่านไป 10-11 วินาที ภาพการคาดเดาก็น้อยลง เพราะพลังงานของอนุภาคลดลงลงถึงระดบที่สามารถอธิบายได้ด้วยการทดลองฟิสิกส์อนุภาค ที่เวลา 10-6 วินาที ควาร์กและกลูออนรวมตัวกันกลายเป็นอนุภาคบาร์ยอนจำนวนหนึ่งเช่น โปรตอน และนิวตรอน ปริมาณควาร์กที่มีมากกว่าปฏิควาร์กอยู่เล็กน้อยทำให้อนุภาคบาร์ยอนมีมากกว่า ปฏิบาร์ยอนเช่นเดียวกัน ถึงเวลานี้อุณหภูมิของเอกภพก็ไม่สูงพอที่จะสร้างคู่โปรตอน-ปฏิโปรตอนใหม่อีก แล้ว (ทำนองเดียวกันกับนิวตรอนและปฏินิวตรอน) จึงเกิดการทำลายมวลครั้งใหญ่ เหลือเพียง 1 ใน 1010 ของโปรตอนและนิวตรอนในตอนเริ่มต้น และไม่มีปฏิอนุภาคของพวกมันเหลืออยู่เลย กระบวนการเดียวกันนี้เกิดขึ้นอีกในเวลาประมาณ 1 วินาทีสำหรับอิเล็กตรอนและโพสิตรอน หลังจากพ้นช่วงการทำลายมวล โปรตอน นิวตรอน และอิเล็กตรอนที่เหลือก็ไม่มีความเร็วสัมพัทธ์สูงยิ่งยวดอีกต่อไป แต่โฟตอนกลายเป็นองค์ประกอบสำคัญของความหนาแน่นพลังงานของเอกภพ (และบทบาทเล็กน้อยอีกส่วนหนึ่งโดยนิวตริโน)

ไม่กี่นาทีต่อมาเอกภพก็เริ่มการขยายตัว เมื่ออุณหภูมิมีค่าประมาณ 1 พันล้านเคลวิน และมีความหนาแน่นประมาณความหนาแน่นของอากาศ นิวตรอนรวมตัวเข้ากับโปรตอนกลายเป็นนิวเคลียสของดิวเทอเรียมและฮีเลียม ซึ่งเป็นกระบวนการที่เรียกว่า บิกแบงนิวคลีโอซินทีสิส[23] โปรตอนส่วนใหญ่ยังคงไม่ได้รวมตัว ดังเช่นนิวเคลียสของไฮโดรเจน เมื่อเอกภพเย็นลง ความหนาแน่นพลังงานมวลของสสารที่เหลือก็เริ่มมีอิทธิพลเหนือการแผ่รังสีของ โฟตอน หลังจากผ่านไป 379,000 ปี อิเล็กตรอนกับนิวเคลียสรวมตัวเข้าไปในอะตอม (ส่วนใหญ่เป็นไฮโดรเจน) ทำให้การแผ่รังสีแยกตัวจากสสารและแพร่ไปในห้วงอวกาศอย่างไร้เขตจำกัด การแผ่รังสีนี้มีผลหลงเหลืออยู่ดังที่ปัจจุบันรู้จักกันในชื่อ การแผ่รังสีคอสมิกไมโครเวฟพื้นหลัง[24]

เวลาผ่านไปอีกเนิ่นนาน ย่านรอบนอกแกนกลางที่มีความหนาแน่นเจือจางกว่าเริ่มมีการจับตัวกับสสารใกล้ เคียงและเพิ่มความหนาแน่นของตนมากขึ้น ก่อตัวเป็นกลุ่มเมฆแก๊ส ดาวฤกษ์ ดาราจักร และโครงสร้างอื่นๆ ทางดาราศาสตร์ที่เราสังเกตเห็นได้ในปัจจุบัน รายละเอียดของกระบวนการเหล่านี้ขึ้นกับปริมาณและประเภทของสสารที่มีอยู่ใน เอกภพ สสารที่เป็นไปได้สามชนิดได้แก่ สสารมืดเย็น สสารมืดร้อน และสสารบาร์ยอนิก จากเครื่องมือวัดดีที่สุดเท่าที่เรามีอยู่ (คือดาวเทียม WMAP) แสดงให้เห็นว่าส่วนประกอบสำคัญของสสารในเอกภพคือสสารมืดเย็น ส่วนสสารอีกสองชนิดมีอยู่เป็นจำนวนไม่ถึง 18% ของสสารทั้งหมดในเอกภพ[20]

ปรากฏการณ์ที่เป็นอิสระจากกันของการเกิดซูเปอร์โนวาประเภท Ia กับไมโครเวฟพื้นหลังซึ่งสร้างเอกภพดังเช่นทุกวันนี้ ได้รับอิทธิพลจากพลังงานลึกลับชนิดหนึ่งซึ่งรู้จักในชื่อ พลังงานมืด (dark energy) ที่ดูจะแทรกซึมอยู่ทั่วไปในอวกาศ ผลการสังเกตการณ์บ่งชี้ว่า 72% ของความหนาแน่นพลังงานทั้งหมดของเอกภพในปัจจุบันเป็นพลังงานในรูปแบบดัง กล่าวนี้ เมื่อครั้งที่เอกภพยังมีอายุน้อย พลังงานมืดอาจจะแทรกซึมเข้ามาบ้าง แต่เมื่อเวลาที่ทุกสิ่งทุกอย่างยังอยู่ใกล้กันมากและมีช่องว่างอยู่น้อย แรงโน้มถ่วงจึงมีอิทธิพลมากกว่า และพยายามจะชะลอการแผ่ขยายตัวของเอกภพอย่างช้าๆ อย่างไรก็ดีหลังจากการขยายตัวของเอกภพผ่าน ไปหลายพันล้านปี พลังงานมืดที่มีอยู่มากมายมหาศาลก็เริ่มทำให้การขยายตัวมีอัตราเร่งเพิ่ม ขึ้นทีละน้อย เราสามารถแปลงพลังงานมืดให้อยู่ในรูปแบบอย่างง่ายในค่าคงที่จักรวาลของสมการของไอน์สไตน์ตามทฤษฎีสัมพัทธภาพทั่วไป แต่องค์ประกอบและกลไกของพลังงานนี้ยังไม่เป็นที่เข้าใจ รายละเอียดของสมการสภาวะและความสัมพันธ์ของพลังงานนี้กับแบบจำลองมาตรฐานในวิชาฟิสิกส์อนุภาคยังคงอยู่ในระหว่างการค้นหาทั้งโดยการเฝ้าสังเกตการณ์และโดยการวิจัยทางทฤษฎี[8]

วิวัฒนาการของจักรวาลทั้งหมดหลังจากยุคของการพองตัวสามารถอธิบายได้ด้วยแบบจำลองแลมบ์ดา-ซีดีเอ็มอันเป็นแบบจำลองจักรวาลวิทยา โดยใช้กรอบสังเกตการณ์อิสระของควอนตัมเมคานิกส์กับทฤษฎีสัมพัทธภาพทั่วไปของไอน์สไตน์ อย่างไรก็ดี ดังได้กล่าวไว้แล้วข้างต้นว่า แบบจำลองเท่าที่มีอยู่ยังไม่สามารถใช้อธิบายสิ่งที่เกิดขึ้นก่อนช่วงเวลา 10-15 วินาทีแรกได้ ทฤษฎีรวมแรงใหม่ๆ อย่างเช่นทฤษฎีโน้มถ่วงเชิงควอนตัมเป็น ความพยายามที่จะข้ามพ้นข้อจำกัดนั้น ความเข้าใจในสภาวะแรกเริ่มในประวัติศาสตร์ของเอกภพเป็นหนึ่งในปัญหาที่ยิ่ง ใหญ่ที่สุดในทางฟิสิกส์ที่ยังไม่สามารถค้นหาคำตอบได้

ข้อมูลการสังเกตการณ์

ข้อมูลการสังเกตการณ์ชุดแรกสุดที่สอดคล้องกับทฤษฎีนี้ได้แก่ การสังเกตการณ์การขยายตัวแบบฮับเบิลที่พบในการเคลื่อนไปทางแดงของเหล่าดาราจักร การตรวจพบการแผ่รังสีของไมโครเวฟพื้นหลัง และปริมาณของอนุภาคแสงจำนวนมาก (ดูใน บิกแบงนิวคลีโอซินทีสิส) บางครั้งเรียกทั้งสามสิ่งนี้ว่าเป็นเสาหลักของทฤษฎีบิกแบง การสังเกตการณ์อื่นๆ ในยุคต่อมาต่างสนับสนุนให้เห็นภาพรวมชัดเจนยิ่งขึ้น โดยเฉพาะการค้นพบคุณลักษณะอันหลากหลายของโครงสร้างขนาดใหญ่ของจักรวาล[25] ซึ่งตรงกับการคาดการณ์การขยายตัวของโครงสร้างเอกภพภายใต้แรงโน้มถ่วงตามทฤษฎีมาตรฐานของบิกแบง

กฎของฮับเบิลและการขยายตัวของอวกาศ

ผลจากการสังเกตการณ์ดาราจักรและเควซาร์อันไกลโพ้นพบว่าวัตถุเหล่านั้นมีการเคลื่อนไปทางแดง (redshift) กล่าวคือ แสงที่ส่งออกมาจากวัตถุเหล่านั้นมีความคลาดเคลื่อนของความยาวคลื่นที่ยาวมากขึ้น เราสามารถมองเห็นได้โดยการตรวจสอบสเปคตรัมความถี่ของวัตถุเปรียบเทียบกับรูปแบบการเปลี่ยนแปลงใน การกระจายหรือดูดกลืนแถบคลื่นความถี่ที่สอดคล้องกับปฏิกิริยาระหว่างอนุภาค ทางเคมีกับแสง ปรากฏการณ์การเคลื่อนไปทางแดงที่พบล้วนสอดคล้องเป็นอันหนึ่งอันเดียวกันแม้ จะทำการสังเกตการณ์วัตถุเหล่านั้นในทิศทางต่างๆ กัน หากอธิบายการเคลื่อนไปทางแดงด้วยปรากฏการณ์ดอปเปลอร์ เราจะสามารถคำนวณความเร็วของวัตถุที่เหลื่อมช้าลงได้ สำหรับดาราจักรบางแห่ง มีความเป็นไปได้มากที่จะประมาณระยะห่างด้วย cosmic distance ladder เมื่อนำความเร็วที่เหลื่อมลงมาเปรียบเทียบกับระยะห่างที่คำนวณได้ เราจะได้สมการความสัมพันธ์เชิงเส้นซึ่งรู้จักกันในชื่อกฎของฮับเบิล ดังนี้

v = H_0 D \,

โดยที่

v หมายถึง ความเร็วเหลื่อมลงของดาราจักรหรือวัตถุห่างไกล

D หมายถึง ระยะห่างระหว่างการเคลื่อนที่ของวัตถุที่สังเกต

H0 หมายถึง ค่าคงที่ของฮับเบิล ซึ่งอยู่ระหว่าง 70.1 ± 1.3 กิโลเมตร/วินาที/เมกะพาร์เซก โดยวัดจาก WMAP[20]

กฎของฮับเบิลสามารถอธิบายความเป็นไปได้อยู่สองทาง ทางหนึ่งคือเราอยู่ที่ศูนย์กลางของการระเบิดของดาราจักร ซึ่งขัดแย้งกับหลักการพื้นฐานโคเปอร์นิคัสอย่าง หลีกเลี่ยงไม่ได้ อีกทางหนึ่งคือเอกภพมีการขยายตัวอย่างสม่ำเสมอกันในทุกๆ แห่ง การขยายตัวอย่างเป็นเอกภาพนี้เคยมีการทำนายได้ก่อนหน้านี้แล้วจากสมการสัมพัทธภาพทั่วไปของอเล็กซานเดอร์ ฟรีดแมน ที่คำนวณไว้ในปี ค.ศ. 1922[4] และจากงานของจอร์เจส เลไมเตร ในปี ค.ศ. 1927[5] ก่อนหน้าที่ฮับเบิลจะทำการสังเกตการณ์และวิเคราะห์ออกมาในปี 1929 และมันยังเป็นหลักการสำคัญของทฤษฎีบิกแบงที่พัฒนาขึ้นโดยฟรีดแมน เลไมเตร โรเบิร์ตสัน และวอล์คเกอร์

ทฤษฎีนี้มีเงื่อนไขอยู่ว่า ความสัมพันธ์ v = HD จะต้องดำรงอยู่ตลอดเวลา เมื่อ D เป็นระยะห่างที่แท้จริง v = dD / dt และ v, H, D ล้วนแต่เปลี่ยนแปลงค่าไปเมื่อเอกภพขยายตัว (เหตุนี้เราจึงต้องเขียนว่า H0 เพื่อระบุ "ค่าคงที่" ของฮับเบิล ณ วันปัจจุบัน) เนื่องจากระยะห่างที่สังเกตมีค่าน้อยกว่าขนาดของเอกภพในสังเกตการณ์อย่างมาก ปรากฏการณ์เคลื่อนไปทางแดงของฮับเบิลจึงสามารถพิจารณาโดยใช้หลักการเดียวกัน กับปรากฏการณ์ดอปเปลอร์ได้ อย่างไรก็ดี พึงตระหนักว่าการเคลื่อนไปทางแดงไม่ใช่การคลาดเคลื่อนแบบเดียวกับดอปเปลอร์ เป็นแต่เพียงผลจากการขยายตัวของเอกภพระหว่างช่วงเวลาหนึ่ง และแสงมีการเปล่งออกมาระหว่างช่วงเวลาที่สังเกตอยู่

ห้วงอวกาศที่อยู่ภายใต้มาตรวัดการขยายตัวแสดงออกมาให้เห็นได้จากการสังเกตการณ์โดยตรงของหลักการพื้นฐานจักรวาลวิทยาและหลักการพื้นฐานโคเปอร์นิคัส ซึ่งเมื่อพิจารณาร่วมกับกฎของฮับเบิลแล้วก็ไม่มีคำอธิบายอื่นใดอีก การเคลื่อนไปทางแดงในทางดาราศาสตร์ถือเป็นปรากฏการณ์เฉพาะตัวที่เป็นหนึ่ง เดียว[1] มันช่วยสนับสนุนแนวคิดหลักการพื้นฐานจักรวาลวิทยาว่า เอกภพมีหน้าตาเหมือนกันหมดไม่ว่าจะมองจากทิศทางใด รวมถึงข้อมูลสังเกตการณ์อื่นๆ อีกมาก ถ้าการเคลื่อนไปทางแดงนี้เป็นผลจากการระเบิดตัวออกจากจุดศูนย์กลางแห่งอื่น ซึ่งไม่ใช่ตำแหน่งของเรา มันไม่ควรให้ภาพที่คล้ายคลึงกันจากการมองในมุมต่างกันได้

การตรวจพบผลการแผ่รังสีคอสมิกจากไมโครเวฟพื้นหลังจากการเคลื่อนไหวของ ระบบฟิสิกส์ดาราศาสตร์อันห่างไกลแห่งหนึ่งเมื่อปี ค.ศ. 2000 ช่วยพิสูจน์หลักการพื้นฐานของโคเปอร์นิคัส ที่ว่าโลกไม่ได้อยู่ที่ตำแหน่งศูนย์กลางแม้แต่ในระดับของจักรวาล[26] การแผ่รังสีจากบิกแบงเห็นได้ชัดว่าเอกภพในช่วงต้นจะอบอุ่นกว่าในทุกหนทุก แห่ง การเย็นลงอย่างทั่วถึงกันของไมโครเวฟพื้นหลังตลอดช่วงหลายพันล้านปีที่ผ่าน มาเป็นการอธิบายอย่างชัดเจนว่า เอกภพเคยแต่ขยายตัวออกเท่านั้น ทั้งนี้ไม่นับความเป็นไปได้ที่ว่าเราอยู่ใกล้จุดศูนย์กลางของการระเบิดใน คราวนั้น

การแผ่รังสีคอสมิกของไมโครเวฟพื้นหลัง

ในช่วงเวลาไม่กี่วันแรกของเอกภพ เอกภพอยู่ในสภาวะสมดุลความร้อนอย่างสมบูรณ์ โฟตอนยังคงเปล่งแสงและดูดกลืนแสงอย่างสม่ำเสมอ การแผ่รังสีจึงวัดได้เหมือนสเปคตรัมของวัตถุดำ เมื่อเอกภพขยายตัวขึ้น อุณหภูมิก็เย็นลงจนกระทั่งโฟตอนไม่อาจเกิดขึ้นใหม่และไม่อาจถูกทำลายลง แม้อุณหภูมิจะยังคงสูงมากพอที่อิเล็กตรอนและนิวเคลียสจะยังแยกกันอยู่ แต่โฟตอนอยู่ในภาวะ "สะท้อน" อย่างคงที่ต่ออิเล็กตรอนอิสระเหล่านี้ เป็นกระบวนการที่เรียกว่า Thomson scattering (การกระจายของทอมสัน) ผลจากการกระจายที่ซ้ำไปซ้ำมานี้ ทำให้เอกภพในยุคแรกเป็นสิ่งทึบแสง

เมื่ออุณหภูมิของเอกภพลดลงเหลือไม่กี่พันเคลวิน อิเล็กตรอนและนิวเคลียสเริ่มรวมตัวกันกลายเป็นอะตอม เป็นกระบวนการที่เรียกว่า การรวมตัว (recombination) เมื่อโฟตอนกระจายตัวอย่างไม่สม่ำเสมอจากอะตอมที่เป็นกลาง การแผ่รังสีก็แยกตัวจากสสารในเวลาที่อิเล็กตรอนได้รวมตัวกันไปจนเกือบหมด นั่นคือยุคของการกระจายขั้นสุดท้าย คือ 379,000 ปีหลังจากบิกแบง โฟตอนเหล่านี้เป็นต้นกำเนิดของไมโครเวฟพื้นหลังดัง ที่เราสังเกตพบในปัจจุบัน รูปแบบการแกว่งตัวของไมโครเวฟพื้นหลังเป็นภาพโดยตรงของเอกภพในยุคแรกเริ่ม นี้ พลังงานของโฟตอนมีการคลาดเคลื่อนไปในเวลาต่อมาตามการขยายตัวของเอกภพ แม้จะดำรงสภาวะวัตถุดำอยู่แต่ก็ได้ทำให้อุณหภูมิลดน้อยลง ซึ่งหมายความว่าโฟตอนเหล่านั้นได้ลดระดับพลังงานลงมาอยู่ในย่านไมโครเวฟของสเปกตรัมคลื่นแม่เหล็กไฟฟ้า เชื่อว่าการแผ่รังสีนี้สามารถสังเกตพบได้ในทุกตำแหน่งในเอกภพ และมาจากทุกทิศทุกทางด้วยระดับความเข้มที่ (เกือบจะ) เท่ากันทั้งหมด

ปี ค.ศ. 1964 อาร์โน เพนซิอัส และ โรเบิร์ต วิลสัน ค้นพบการแผ่รังสีคอสมิกพื้นหลังโดยบังเอิญขณะทำการตรวจวิเคราะห์โดยใช้อุปกรณ์ตรวจจับคลื่นไมโครเวฟตัวใหม่ของห้องทดลองเบลล์[27] การค้นพบของพวกเขาให้ข้อมูลมากพอที่จะทำนายไมโครเวฟพื้นหลังได้ การแผ่รังสีมีลักษณะเป็นเอกภาพและสอดคล้องกับสเปคตรัมวัตถุดำ การค้นพบนี้ยังช่วยส่งเสริมแนวคิดฝ่ายของทฤษฎีบิกแบง ขณะที่เวลานั้นแนวคิดต่างๆ ยังไม่อาจเอาชนะคัดง้างกันได้ เพนซิอัสกับวิลสันได้รับรางวัลโนเบลสำหรับการค้นพบครั้งนี้

ปี ค.ศ. 1989 นาซาส่งดาวเทียมสำรวจคอสมิกพื้นหลัง (Cosmic Background Explorer; COBE) ขึ้นสู่อวกาศ และการค้นพบอย่างแรกที่ปรากฏในปี 1990 คือข้อสนับสนุนแนวคิดของบิกแบงเกี่ยวกับไมโครเวฟพื้นหลัง ดาวเทียม COBE พบอุณหภูมิที่เหลืออยู่ 2.726 K ต่อมาในปี 1992 ก็สามารถตรวจพบสภาพการแกว่งตัวของไมโครเวฟพื้นหลังได้เป็นครั้งแรก[16] จอห์น ซี. เมเทอร์ และจอร์จ สมูท ได้รับรางวัลโนเบลในฐานะผู้นำในการค้นพบคราวนี้ ตลอดทศวรรษต่อมาการศึกษาการแกว่งตัวของไมโครเวฟพื้นหลังก็ดำเนินการต่อโดย ใช้บอลลูนตรวจการณ์และกิจกรรมภาคพื้นดินจำนวนมาก ระหว่างปี ค.ศ. 2000-2001 มีการทดลองต่างๆ มากมาย ที่โดดเด่นคือกลุ่มทดลอง BOOMERanG พวกเขาพบว่าเอกภพมีสภาพค่อนข้างแบนเมื่อตรวจเทียบกับขนาดเชิงมุมตามปกติของการแกว่งตัว (ดูเพิ่มใน รูปร่างของเอกภพ)

ช่วงต้นปี ค.ศ. 2003 ผลการตรวจสอบครั้งแรกของดาวเทียมศึกษาการแกว่งตัวของไมโครเวฟวิลคินสัน (Wilkinson Microwave Anisotropy satellite; WMAP) ได้เปิดเผยค่าองค์ประกอบของจักรวาลบางส่วนที่แม่นยำอย่างยิ่งซึ่งปรากฏอยู่ในช่วงเวลานั้น ดาวเทียมดวงนี้ยังพิสูจน์ค้านแบบจำลองการพองตัวของจักรวาลหลายชุด แต่ผลตรวจวัดสอดคล้องกับทฤษฎีการพองตัวโดยทั่วๆ ไป มันยังช่วยยืนยันด้วยว่ามีคอสมิกนิวตริโน แผ่ซ่านอยู่ทั่วไปทุกหนแห่งในเอกภพ ข้อมูลนี้ชัดเจนว่า ดาวฤกษ์กลุ่ม แรกๆ ต้องใช้เวลามากกว่าห้าร้อยล้านปีในการสร้างกลุ่มไอคอสมิก (cosmic fog) ขึ้น ดาวเทียมอีกดวงหนึ่งที่มีลักษณะคล้ายคลึงกันคือ "นักสำรวจพลังค์" (Planck Surveyor) จะถูกส่งขึ้นสู่อวกาศในอีกไม่กี่ปีข้างหน้านี้ ซึ่งจะมีอุปกรณ์ตรวจวัดค่าการแกว่งตัวของไมโครเวฟพื้นหลังที่ละเอียดแม่นยำ มากยิ่งขึ้น

การแผ่รังสีพื้นหลังนี้ราบเรียบเป็นพิเศษ ทำให้สามารถอธิบายข้อปัญหาเกี่ยวกับการขยายตัวอย่างธรรมดาซึ่งน่าจะหมายความ ว่า โฟตอนที่เคลื่อนมาจากฝั่งตรงข้ามของท้องฟ้าน่าจะมาจากเขตแดนที่ไม่เคยติดต่อ กับใครมาก่อน คำอธิบายที่เป็นไปได้สำหรับสภาวะสมดุลอันห่างไกลกันนี้คือ เอกภพมีช่วงเวลาการระเบิดและขยายตัวอย่างสูงเพียงเวลาสั้นๆ (เราอาจเรียกว่า การพองตัว (inflation)) ผลก็คือย่านต่างๆ ในเอกภพถูกฉีกออกจากกันในสภาวะสมดุล เอกภพที่เราสังเกตการณ์อยู่จึงมาจากย่านที่สมดุลและมีทุกอย่างเหมือนๆ กัน

อนุภาคมูลฐานส่วนเกิน

ด้วยแบบจำลองบิกแบง เราสามารถคำนวณความหนาแน่นของ ฮีเลียม-4 ฮีเลียม-3 ดิวเทอเรียม และลิเทียม-7 ในเอกภพออกมาได้ในสัดส่วนเทียบกับไฮโดรเจนปกติ[23] อนุภาคส่วนเกินทั้งหมดขึ้นอยู่กับปัจจัยเพียงอย่างเดียว คือสัดส่วนของอนุภาคโฟตอนต่อบาร์ยอน ซึ่งสามารถคำนวณอย่างอิสระได้จากโครงสร้างโดยละเอียดของการแกว่งตัวของ ไมโครเวฟพื้นหลัง คาดว่าสัดส่วนนี้ (เป็นสัดส่วนโดยมวล มิใช่โดยจำนวน) อยู่ที่ประมาณ 0.25 สำหรับ 4He/H, ประมาณ 103 สำหรับ ²H/H, ประมาณ 104 สำหรับ ³He/H และประมาณ 109 สำหรับ 7Li/H[23]

อนุภาคส่วนเกินที่วัดได้ทั้งหมดมีค่าโดยประมาณอย่างน้อยเท่ากับค่าคาด การณ์จากสัดส่วนอนุภาคบาร์ยอนต่อโฟตอน ค่านี้สอดคล้องอย่างยิ่งสำหรับดิวเทอเรียม ใกล้เคียงแต่ไม่เป็นที่ยอมรับสำหรับ 4He และผิดพลาดไปสองเท่าสำหรับ 7Li ในสองกรณีหลังนี้มีความไม่แน่นอนอย่างเป็นระบบชัดแจ้งอยู่ อย่างไรก็ดี ความสอดคล้องของอนุภาคส่วนเกินที่ทำนายโดยบิกแบงนิวคลีโอซินทีสิสเป็นหลัก ฐานสำคัญอย่างยิ่งต่อทฤษฎีบิกแบง เพราะมีแต่เพียงทฤษฎีนี้ที่จะอธิบายอนุภาคที่สัมพันธ์กับอนุภาคแสง นอกจากนี้ยังไม่มีทางที่จะ "ปรับแต่ง" ทฤษฎีบิกแบงให้สามารถสร้างฮีเลียมมากหรือน้อยกว่า 20-30% ได้[28] อันที่จริงแล้วยังไม่มีเหตุผลที่ชัดเจนอื่นใดนอกจากทฤษฎีบิกแบงจะอธิบาย สภาวะดังตัวอย่างเช่น เอกภพที่อายุน้อย (ก่อนที่ดาวฤกษ์จะก่อตัวขึ้น) จะมีฮีเลียมมากกว่าดิวเทอเรียม หรือมีดิวเทอเรียมมากกว่า 3He หรือมีสัดส่วนที่คงที่ หรืออื่นๆ ได้

ประเด็นปัญหาอื่นๆ ของทฤษฎี

แม้ในปัจจุบันไม่ค่อยมีนักวิจัยคนใดตั้งข้อสงสัยอีกแล้วว่า บิกแบงเคยเกิดจริงหรือไม่ แต่ครั้งหนึ่งในชุมชนนักวิทยาศาสตร์เคยมีความคิดแตกออกเป็นสองฝ่าย คือฝ่ายสนับสนุนบิกแบงและฝ่ายสนับสนุนแบบจำลองจักรวาลวิทยาอื่นๆ ตลอดช่วงเวลาวิวัฒนาการของทฤษฎี ข้อสงสัยในทฤษฎีบิกแบงมักเป็นการโต้เถียงในทำนองว่า แบบจำลองดีพอที่จะอธิบายผลสังเกตการณ์จักรวาลได้ทั้งหมดหรือไม่ จนเมื่อชุมชนนักวิทยาศาสตร์มีความเห็นเป็นเอกฉันท์สนับสนุนทฤษฎีนี้แล้ว ประเด็นข้อสงสัยต่างๆ ก็ยังถูกบันทึกไว้เป็นประวัติศาสตร์ของความสนใจ การแก้ต่างข้อสงสัยเหล่านั้นเกิดขึ้นได้จากทั้งการดัดแปลงทฤษฎีให้ดีขึ้น หรือเมื่อได้รับผลสังเกตการณ์ที่ชัดเจนยิ่งขึ้น สำหรับประเด็นปัญหาบางข้อที่ยังตกค้างอยู่เช่น ปัญหา cuspy halo หรือปัญหาดาราจักรแคระเกี่ยวกับสสารมืดเย็น ยังไม่ถือว่าเป็นอุปสรรคต่อทฤษฎีโดยตรง เพราะยังสามารถอธิบายได้หากมีการพัฒนารายละเอียดของทฤษฎีให้ละเอียดรอบคอบมากขึ้น

แนวคิดหลักของทฤษฎีบิกแบงคือ การขยายตัวของเอกภพ ภาวะร้อนยิ่งยวดในช่วงต้น การก่อตัวของฮีเลียม และการก่อตัวของดาราจักร แนวคิดเหล่านี้พัฒนาขึ้นมาจากผลสังเกตการณ์อิสระมากมาย รวมถึงการพบอนุภาคส่วนเกินของแสงจำนวนมาก การพบไมโครเวฟพื้นหลัง การพบโครงสร้างขนาดใหญ่ของเอกภพ และซูเปอร์โนวาประเภท Ia ไม่เป็นที่สงสัยเลยว่าทฤษฎีนี้มีความสำคัญอย่างยิ่งและเป็นองค์ประกอบอันแท้จริงของเอกภพของเรา

แบบจำลองบิกแบงยุคใหม่ที่มีความแม่นยำมากขึ้นดูจะช่วยอธิบายปรากฏการณ์ ทางฟิสิกส์ที่แปลกประหลาดหลายอย่างซึ่งไม่สามารถสังเกตการณ์ในห้องทดลองตาม ปกติ รวมถึงไม่เข้ากับแบบจำลองมาตรฐานของวิชาฟิสิกส์อนุภาค ในบรรดานี้ เรื่องที่ลึกลับที่สุดคือเรื่องของพลังงานมืดกับสสารมืด ส่วนการพองตัวกับปฏิกิริยาบาร์โยเจเนซิสยัง เป็นแค่เพียงการคาดเดา ทฤษฎีนี้ช่วยอธิบายปรากฏการณ์สำคัญในช่วงเริ่มต้นของเอกภพได้ อย่างไรก็ดีมันยังอาจถูกแทนที่โดยแนวคิดที่เป็นไปได้อื่นๆ โดยไม่มีผลกระทบต่อทฤษฎีส่วนที่เหลือ คำอธิบายสำหรับปรากฏการณ์เหล่านี้ยังคงอยู่เพียงระดับชายเขตแดนแห่งปริศนาของฟิสิกส์เท่านั้น